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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteratic.

A a A A, a P p p p R, r
65 B, b C c C C S, S

Be 5. V, v T T T , t

F pa GS g Y y y y U 9
D, d 0 F f

E e E a Ye, ye; E, e* X x X x Kh, kh

M W Ta Zh, zh QLA Q 'a Ts, ts
3 3 3 1 Z, z V w y t Ch, ch

U I, i W W j w Sh, sh

a J Y, y Wig Uf Shch, snch

K, k b

An J1 a L, 1 Mi bt Y, y
. I M m M, m b I

H H N m N, n 3 3 9 E, e

0 0 0 0, 0 h w o Yu, yu
fln 17 x Pp R Ja Ya, ya

ye initially, after vowels, and after b. 6; e elsewhere.
When written as 6 in Russian, transliterate as y4 or 9.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English Russian English

sin sin sh sinh arc sh sinn
cos cos ch cosh arc ch cosh-
tg tan th tanh arc th t ann
ctg cot cth coth arc cth coth
sec sec sch sech arc sch sech .
cosec csc csch csch arc csch csch -

Russian English

rot curl
ig log
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CORRECTIVE ARITHSETIC COD&S 11 THE RESIDUAL CLASS SYSTEM

S. B. Payn

Designations. We vill use Latin and Greek letters to designate

whola numbers, ps, Pt, *ooe , - prime numbers (sometimes reciprocal

prim numbers in pairs),

A
Q, = ,, R, - p,+, ... p,, i _ , 2, .... )

- the group of remainders of reciprocal primes with modulus ,p, 11

the group of remainders of reciprocal primes with modulus P.

Further designatics Vill be introduced in the appropriate

place.
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§1. Representation of gunners in tae Residual Class System

Let 0 K A < P, a&, as, .. , an the smallest nonnegative

remainders of number A with moduli of pt, P. --- , Pn, respectively.

Ue will call the expression

.4 (%, =2 . (i)

the representation of number A in the residual class system

(abbreviated SOK).

The numbers pit pg, ., pn are called the bases of the system,

and the numbers a,, as ... , a - the numbers of the given

representation with moduli Pg. Est --- , Pi, respectively.

The whole numbers in zhe range [o, P) and representations

(1) are in a one-to-one correspondence.

Actually, the remainders from division by the given numbers

Pj# Ps# e.. p, art uniquely daianed, on one hand, and on the other

hand, ye know -that the system ot comparisons

x % j (mid p) (i - 1, 2, ... , n) (2)

----- ......
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has the uniquae solution

x =-A(mod P), o 5A <P, (3)

*with reciprocal prime numbers p,, P26 *of..

Remark. If the numker A satislies the inequality

it is uniquely determined by th~e remainders for the moduli

Pi ii " Therefore, w.i:h ccudition (4), along with

representation (1) we can write

knalogoasly, with the condition

oA < Pi or 0' 'A<Q--i4-(5

we can write

or

--- --- --.--.-----. -*---.-- (6)-.
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Unlike the positicn system, the arithmetic operations in the

residual class system are pezozmed step-by-step. Thus, if

A , ('z 22, ... t %")I

are the representations cf numares A and B in the SOK, then if we

consider z b e3 and k..z, to be tae smallest ncnnegative remainders of

these numbers for the moduli p,(i-I, , ... ,), the numbers A I B and

AB can be represented as

A ~ ~ -,--B j" .... (7)
AB =( . ,

This assertion is a direct result of the fact known from number

theory that from

A= i,(modpi), B _=-- ,(modpi) (i - 1, 2, n)

it follows that

A A-B -- Ai, (modp,)
(i 1 ,2, 2 ,).

Obviously, if we do not make certain limitations, the results of

(7) of the execution of axitametic operations in the SOK are only
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obtained with precision down to tae terms which are multiples of P.

Now we will consider the possibility of performing division

operations in the SOK:

Ve know that the classes of remainders of reciprocal primes with

the prime modulus pL fc m, oy multiplication, a finite group r, of

order pj, - 1. The numbers 0, 1, 2, .0.V p; - I can be used as the

representations of this group. if de consider representation (1) with

the condition aL # 0 (i = 1, 2, ... , n), these representations also

form, by multiplication, the finita group 1, which is the direct sum

of the groups W1 , 2 , ... , r. Onviously, the order of group ff is

equal to

IP(P)= -) (p, .- ,,

where *(P) is the Euler function.

It follows from the aforementioned that if we limit ourselves to

elements of group IT, i.e.s representations (1) do not contain

zeroes, division can be carried cuz in the SOK step by step.

Let A and 8 be elements of group If, and

I
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A- (% € ... ,0) =o ( 1, 2 , . .n

- thair representations in the SO&. The ratio A/B will be assigned

the value
A
B

where y (i = 1, 2, ... a ja are defined as the solutions of the

comparisons

T#,=  (rood pi) (i -. 1. 2 .., ))

od

These comparisons also only have unique solutions when $ A 0, while

a- can also assume the value 0. Therefore, we can eliminate the

Ulmitation a, A 0.

Two cases are possible:

1) the number A is evenly divisible by B; in this case,

representation (8) gives the true value c€ the fraction A/B.

2) the number A is not evenly divisible by B; in this case. we

will call representatica (8) the formal representation of the

fraction A/B (see (2 ]).

a' __Midi
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Representation (8) yields a certain whole number C in both

cases. In the first case, we nave C - A/B, and in the second-

C I-(modP).
B

We will consider the case wihen A is evenly divisible by 9, but

there are zeroes in PL, Suppjose, for example, that P4 = 0, where i is

fixed. Then it fcllovs froa the divisibility of A by B that aj = 0,

as well. Thus, with step-by-step division in the L-th step of

representation (8) * the undat.Lned value 0/0 is present. in this case,

since, obviously, A/B < P;, tae aumaber C is determined by the

representation

C - (Ts, TV Ti-v T'4.a'- , YA)

(see (5), (6)). The preblem of finding the numbers -y; will be solved

in the next section.

Later we will give examples illustrating the possibilities of

using formal representations of the fractions.

Now we will consider a method of representing negative numbers

in the SOK.
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as we already pointed out, the set of representations (1)

uniquely defines the nuskers in the range EO, P). we will divide this

range into two parts [0, 2/2) and jP/2, P). we will call the. the

first and second halves cf the given range, respectively. we will

stipulate that the numbers in the zirst half are considered to be

nonnegative, and the numbQes in th* second half - negative. Here the

numbers in the first hall are nosologous. We will equate the number A

in the second half to the negative number A - P. Obviously, the set

of all negative numbers fills the range (-P/2, 0) when P/2 < A < P.

we will assign the representation of the number A = -iAI in

supplementary code. More preciseiy, if A a(e, . -. ° av)

0 < < P/2, then -& = (p, - a%, Pa - , oo po, - cn). This

representation is equivalenz to the number P - A, whicbelongs to the

second half of the range C0, E).

Thus, we can speak cf a one-to-one correspondence between the

set of representations (1) and the numbers in the range (-P/2, P/2)1.

Footnote: 'Ve will point out that P/2 remains outside the

consideration when P is even. End footnote

If the representation (a,, az, ... , a,) is given, it suffices to
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determine which half of tue range C0, P) this number belongs to in

order to establish the sign of zhe number which it represents.

Nov, having defined the rational operaticns on the relative

numbers in the residual class system, we can state the theorem.

Theorem 1. If the imequality

if! (x, ,: ...V , (,9)

holds for the rational integer function f(x, Y, z, ... ) with rational

coefficients (although they have a formal representation in the SOK)

in a certain range of ckange in the variables, the values of this

function for the indicated values cf the arguments are calculated the

same in the SOK, if we consider the results of the calculations to be

the absolute least remainder with respect to modulus P. Here there

are no values which would make the intermediate results go outside

the range (0, P/2).

*For the proof it suffices tc note that if we ccupare the result

of calculating the raticnal integer function in the SOK with respect

to modulus P with its absolute least remainder, this absolute least

ramainder also gives us a single value of the function in the

assigned range.

........................... S
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we will consider an exauFle illustrating the calculation of an

integral polynomial in the SOK.

3xauple 1. Let the bases of tas system be p 3, Pz 5,

p3= 7, p4 = 11; then F = 1155.

We will calculate the value cz the integral polynomial

(') = -- " - - -

2 2

at x= 13.

In the decimal system, tne calculations give us f(13) = 104, so

that condition (9) of theorem 1 is satisfied.

we will write the representations of the numbers upon which we

will operate: z = 13 = (1, 3, 6, 2),

2 (- , L ' - (2, , 4,6) (±oraal representation)

5 (2, o, 5, 5),

-- "(', o, 2, 6) (sufileaentary code)

23 __-(2, 3, 2, i)-f,,4. , 6) (oaI. representation)
2 (2, 2, 2, 2)
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=; .3 2,r 6. 5) (supplemantary code).

2

we will perform the following operations in succession:

1) x3  £33 = (1 3, 3 , (,, 2-)= (z, 2, S, 8)

(here the result exceeded the limits of the range (0; 1155),

2) -- .\:= (2, , 4, 6) t 1, 2, 6, 8) = (;, 1, ;, 4)
2

(here we obtained the foral representation for the fraction

133/2)

3) - x 6 (, %2 2, -6*-z). " !, b 22)

(r, 0, 2, ,) (i, 4, 1, 4) = (, o, 2, 2),

4) . (2, , 6, s).(1, 3, 6, 2) = (., 3, ', iu

(we also have the formal representation here)

) 3 $, 23
X, -,2- X

2 2

(2, 1, 3, 4)

-(i, 0, 2, 2)

(, 3, 1, 1o)

(2, 4, 6, ) ,-4

The same result as in the aecimal system was obtained.

§2.Conversion of Numbers from the esidual Class System into the
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Position System and Back

In order to convert numbers from the SOK into the position

system. a. Svoboda (2] zseconds the following method, called the

method of orthogonal bases,

Assume that the bases of the system of SOK pj. pa. e*e* p., ars

assigned. Va wili calculate tue values (in the position system) of

the numbers
B, - 0t, a, 0, q a)q
B. - (o, i, o, o ),

in advance. The numbers fl, B2, e04g. Dn are called orthogonal bases.

If A * m,..,xj is the representaticu of the number A in the

SON, in order to find its value in the positicn system, it suffices

to calculate the expression

obviously# A A x (mod P) .

If we search for the numaer A in the range (0, P), obviously

=x- rA'P, where r. X
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According to I. Ya. Akushxiy, thne number rA is called the rank of the

number A.

ve will consider an examfle.

Example 2. We will ccnsider the bases of the system to be the

same as in example 1.

Then a& = 385, Bz = 231, B3 = 330, B4 = 210.

Let A = (2, 4. 6, 5); then

x--3SS + 4-23, +6-330+5.21o4724
r , 4,241 -

-4, = 4724 - 4.$-15 5=104.

The advantage of the method of orthogonal bases is the

simplicity of equaticn (10).

ve will consider the generalized position system (system OPS) ,

in Which the n-step number A is represented as

A - a, +a. Q2+ --- +a.Q, (a,)

where

.Q, =Pi; Q, L z i-z 2., ,)

Qe
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Footnote: & A. Svoboda [2] calls this system a system with a mixed

base. Had footnote

Then it follows from (11) that

A-o 1 +a2P+a:Pt.P 2 ± "+aPI'P 2 .. Pa-L;

the numbers Pie pa, *,a*# p7 ard the bases of the generalized position

system.

If we also assume bore that the numbers aL, are the numbers

0, 1, 2, see# PL - 1, tae volume oi the range of numbers represented

in this system is equal to P p, so P.A.

It is obvious that tao ozdinazl positicn system is obtained from

the genqralized system if we sot

pQ,= (S 1. 2, , 1 ),

where p is the base of the ordinary positiom system.

The procedure of successively obtaining the values of the

numbers in the correspcnding representations can be realized by the

following process:
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1) A is divided by p1; this gives us (A/pl] Al and A Lpj a&

2) A, is divided by pa; this gives ais (&,/pa] =A2 and ILI - A~p2 a2

asses sees 0.1. 0.. 0000 *o 0* 00000 sees ***

i) A,.1 is divided by pL; this -gives us (Aj,_/p A -, and

A41- Ajp - ak

n) An-& is divided by F; tais gives us (A,%.,/pal A and

ApI- ARpftI * ,

Let the numbers pl, pa, **or F%, serve as the simultaneous bases

of the Sal and the 025 (generalized position system]. V. will number

the steps in the SOK and the OPS in the same crder when the intervals

of the change in the nuaters at t0e steps with the same values

co i= ide.

go will write the repremenzation of the number A in the 025 as
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follows
A - [a,, a., a.. ,,]. (13)

The ranges of the nuabezs uniguely represented in the systems

SOK and OPS thus constructed obviously coincide. Therefore, we can

speak of a one-to-one correspondence between the set of

representations (2) cf numbers in the SOK and the set of

representations (13) of numbers in the OPS. The problem consists of

establishing the process of realizing this correspondence.

We will show that algorithm (12) can be successfully used to

convert the representaticn of numbers from the SOK into the OPS,

whereupon the entire ccnversicn pxccedure can be realized in the SOK.

Actually, the comaaziaons below follow from equations (12)

. =_ at (mo(dp,), 0 5 fit < P ,

Ar a, (mod p.), o : a, < P,
.. . . . . . . • . . . . .

- a, (mod p,.). 0 5 am <p.,

where a&, a2, ... , a, aG the digits of the CPS. Thus, the problem of

finding the digits of the OPS is reduced to finding the remainders of

the numbers A, A,, A2# ..- A,,. according to the moduli

p, p, ... , p., respectively. This problem is realized in the SOK as
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follows: lot

A = (Mil 22, ...

be the represented numbers I in the SOK and

,l<p, <-.. <,'. (4)

1) obviously, A i9 a (mod pa), which means that at a&;

2) the integer A, obviously satisfies the condition

A1 < 8; therefore (see 14). J4']), it is determined by its last

In - 1) numbers of representaticn in the SOK. We will calculate these

numbers in the SOK

Pt

where

which means that

3) analogously to above, we will obtain

Awe A - -e " .P, ~

where
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which means that

a(! a.,

I (mod pi42): k- ,2, .. ,f-.

which means that

- ai~, f. 1;'

a) finally

and

Thump we obtained all cf tAft* values of the representation of the

number A in the OPS,

If we eliminate ccadition (14), the process is somewhat

complicated because it baccaes necessary to ccnvert the values of the

OPS obtained into the mCK*
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As we can see, the conversion process can be realized in the

arithmetic unit operating in thu SOK system.

we will consider the opfosi.e problem. Suppose that we know the

representation (13) of thi number A in the CPS. It is necessary to

find its representation in the SCK (1).

We will consider that we know the representations of the numbers

G, Q1, .0., Q. in the SCK. Specifically, let

Q2 f (0, Q1 ...,x,-
, o0, .... Q )1

Q = (0, o , , ).

Then it follows from foxaula (11) that the values a,, ae, ... , 2, can

be found from the comparisons

t - al(mod P1),

09 E a, + a2 Q' (mod p,), (6)

Ma = a, + a2 Q' + ,3 Q' (Mod P.),
. . . . . . . . . . . . . .

-a% +4201V+' ' .+a Q: (mod p,,).

Obviously, these calculaticns can also be realized in the

arithmetic unit operating in the SO.
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if we consider the numbers a,* az, *.., an in system (16) to be

known, the solution of this system gives us the values

at, a&, ... a,,,

We will consider sce examples.

Example 3. We will consider the bases of the system to be the

same as in axample 1. Again, let A v (2, 4, 6, 5). Ve will find the

representation of this number in the OPS. Obviously, we will have

C, a 1, Q2 = 3 = (0, 3, 3, 3), C3 3*5 a O, 0, 1, 4);

4b = 3.5.7 = 0, 0, 0, 6).

We will successively find the digits of the OPS according to

system (15).

-r _ _--
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1) a = 2;

2) A, (2, 4, 6, 5)-(2. 2, 2, 2) - (o, 2, 4, 3) -

3 3

-(2, 4,3) 2 + ~2.j S 4+2. ,)

= (., 4, 6, x), a2 = 4;
S4,6. )-( ,4, 4,4) (,0,.,,8)

2_ _ 2+ 4. 7 + ± 1- (, ,2,8) _____4. , 8 "1L )>r

555
(, ,6, 6), a. 6;

4),h A3' ' )-( 6, 6) 0( , 0),
II

a4 - 0.

Thus, the representation of the OPS has the form

A - [2, 4, 6, 0)= - 4.3 +" 6.x + 0-105 = 104.

We will conduct the opposite procedure. i.e., we will find the

representation of the number A (2 E2, 4, 6, 0] in the residual class

system. According to system (16), we will otain

A -(2, 2 + 4-3, 2+4.3 + 6.1, 2+4.3+6.4+ 0.6) = (2, 4, 6, 5)-

The method found tcz convertiag the representations of the

numbers into the OPS fton the SCd and back can be used for performing

operations of comparing numbers in the arithmetic unit operating in

the SOK.

L
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In order to perform zhe operazion of couraring two numbers A and

B assigned in the SOK, it suftices to convert these numbers into the

OPS, then compare the values st the representations obtained, going
a

from the higher-order digits to the lower-order ones (in our

designations, from right to left). If A > B, the first nonzero

difference in the values wil. be pcsitive, and vice versa.

Ae already pointed cut that when performing operations on

relative numbers, the prcblea at determining the sign of the number

is reduced to determining which cf the two halves of the range [0, P).-

the number belongs to the first [0, P/2), or the second (P/2, P).

This problem is solved by compazng this representation with the

representation of the ruiter CP/ij. (For a fixed system of bases, the

representation of the runner (/2] can be stored in the memory of

both the SOK and the OSj.

The problem of whether the number A, with representation (1),

belongs to intervals E0, j.L, i - 1, 2, ... , n - I is also

interesting. In order to solve this problem, it suffices to obtain

the representation of the number A in the OPS (13). The following

results are completely ckvious:

when a. =0# we will have 0 4 A <

121 ar
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when ,-a,_ 0.....a we will have 0 A < . (17)

In §1, when considering the pcssibilities of performing the

operation of division in the Sol, we noted the case when A is divided

evenly by B, but the nuastrs of the representation of B also

contained zero numbers. It was shown that in this case, the quotient

C is determined by the digits which do not contain the undefined

value 0/0. It is necessary to reveal these undefined values in order

to subsequently perf crm cperaticns with whole-number representations.

Obviously, in order to do this it suffices tc find the remainders of

the number C with respect to tne mcduli cf those digits in which this

indeterminancy exists.

We will describe cue poss~tle method of solving this problem in

the SOK.

Suppose the undefined value 0/0 is present in the digits for the

moduli pL (i = is, i2,. o., i*). 1± we designate

0

the problem consists of tinding the numbers Ti,

In order to find these nuaters, we will convert the

r.
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(a - k)-digit representation (18) into the OPS with the bases

PI, P3, ..' i- 'P, ,. . .Pik-,' Pik~- f .. ',

We will obtain

-=', + e, p + + ei,- 1  Pt'P2  ... P +,- +
+ .Pt'P2 "."" Pi,- Pi,-+-I ... P.-t•

We will assume that we know the representations for the moduli

PIe Pe ---, p. in the C K:

P1 - (0o !, pp . .13 , 1

P2 - (PV 0, p21 . ..P:)

. . . . . . . . . .

p. = (P.,, Pl, ... p:-', o).

Then the unknown digits can be found from the comparisons

y, -'1+ e,p4+*.- e,,.pP'*... p', + ""(mod PJ ('9)

Here it can become necessary to ccnvert the digits of the

repesentation of the generalized pcsition system into the SOK.

These calculations are similitied if we have representations in

the SOK for all possible products comprised of the assigned mcduli

and taken one by one, twc by tuc, etc.
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The conversion cf the representation of a number from the SOK

into the OPS can be realized by tie method cf orthogonal bases. h

First, we will point out tnat the operation of adding numbers in

the OPS is done in the same way as in ordinary position systems: by

the successive addition cr the numbers, from smaller-order to

higher-order, with the crdznay operation of inter-digit carryover,

if the result of additict does not go outside the range C0, P). If

the result of addition exceeds the range, i.e., a higher-order digit

overflowed, it is necessary either to broaden the range, or to

eliminate the consideration of cverflow and take the remainder with

respqct to modulus P as the result of the operation.

Suppose that for a fixed system of bases which satisfies

condition (14) we know tke representations cf the orthogonal bases in

the OPS

B, - [o, ,0 , b;i bin] 2 - , = )

Ve will consider the orthogonal numbers

B, _ (c), o, . .,o, xi,, . .o =i, 2 .. .,)

(o < a <,.

The comparison sign has been pzcvided here, since the product aLB4

can be larger than P. Ve will designate
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Th us,

B, Bi, (rod P),

o :5 BI, < P.

We will find the representation in the OPS for the numbers

In viaw of condition (14), the number < p4 can serve as a value in

each of the digits with the bases

Pis Pe-t P.. P""*

Therefore, the calculatica of the Froduct aj% is reduced to

multiplication by a one-digit number, i.e., it is equivalent to a!

successive additions. If we do not consider the overflow of the n-th

digit in this case, as a result of the calculations we obtain the

representation in the CPS for the number B,, instead of zB%

Let the representations ootained be

B,., [o, o, ... , ,', J.i  , t,,,,... b,,k.,l,

a¢ = ,2, ., p --i , -: 2,. , .

Now we can use formula (10) to convert the representation of the

number A < P from the SON into the OPS. If

A = ( x" 2, ..
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then
.4 B,+% B. + + zB

=B,. + E,., + B.. -- -. + B.. (mod P).

Again, if we do not consider possible overflows in the a-th

higher-order digit when calcula-.Ing the lattar sum, we will

immediately obtain a precise rapresentation of the number A in the

CPS.

For an illustratica, we will again consider example 3.

First we will find the represantaticn of the orthogonal bases i.n

the OPS

B, - [1, 3' 4, 3],
B, = [0, 2, r, 2)1

B3 - o, o, r, 3}
B41, [o. o, , 2.

we will have

A4 - (2, 4, 6, 5)=_2 2B, + 4 B, + 6 B3 + B4
- B12 + B.,1 + B3, + B1j.

[2, 1, 2,.7

1) 3' S' 8
+[o, , 6, 7]

A m2, 4, (1, C-1.
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§3. Corrective Arithmetic Codes in the Residual Class System

In digital computers, insczmation must ordinarily undergo a long

series of different transformazicns before the final result is

obtained. In order for this result to be reliable, extremely rigid

requirements are imposed on the reliability of digital computers.

Diffarent methods of ctecking are used tc provide the reliability cf

the operation of comFuter. The use of codes with redundancy,

so-called corrective codes, is considered to be the most promising.

Corrective codes intended tor data tzansaission systems are

widely known today. The aosct Foular are the Heming codes, which use

the Oparity" method of ckecking. Codes suitable for checking

arithmetic operations mere FroFcsed by Brown [3]. However, it is

difficult to use these ccdes in Fracticq because computers oFerate in

position systems of calculaticn, whereas check operations should be

made on residues. This ccutradicticn will not take place if the

computer itself operates in tas residual class system. I. Ya.

. .. . . .. ... .. ..m ,
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Akushskiy [1] was the first to draw attenticn to this situation,

recommending that the corrective properties of SOK be studied.

The codes considered below can be used fcr correcting errors

which arise during data transaissicn and when performing arithmetic

operations in the SOK.

Ve will consider the representations

to be a code combinaticn, where the digits al, mp --.. , , can be

assigned as binary, like in the sultiposition representation. We know

that a certain whole numker frcm the range (0, P) corresponds to each

representation (1). Ve will use the representations (1) corresponding

to the numbers included in a certain part of the assigned range

(0, P) for transmitting data or performing arithmetic operations.

This makes it possible tc correct the errors.

we will assume that representations (1), which satisfy the

condition
,< <- - P,, (2)

P.

are used for transmitting messages or performing arithmetic

operat ions.

. .
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In this case, the number A is uniquely defined by a

(n - 1)-digit representation (aL, z, .-- , .) (see (5), §1).

Therefore, the digit with the base p. can be considered to be

redundant. According to Basing, tao effectiveness of the code or the

degree of the drop in the cafacity of the channel is detefined as the

value R, equal to the ratio cf the vhole number of transmitted binary

symbols to the minimum nune of symbols necessary for transmitting

this same information.

We will assume that a binary channel is used for data

transmission. We will also assume that the bases of the SOK

Pt, Pz -00* p, are successive Frise numbers. With this coding,

[logzPl.] + I binary symbcls on base pL > 2 are needed for

transmitting the numbez af; one symbol is necessary for transmitting

the number a&. The total number of binary symbols necessary fcr

transmitting representations (messages) (1) will be equal to

- [log, 1 ),

and the minimum number of symbols necessary fcr transmitting the same

message will be equal tc

+ 1 ([log, P1 --
8- 2

wee.,
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We will obtain the follcuing relationship for the value of R:

I + , ([log2 p,J +z
RM

1+ p ([+lug p 1 )

We will evaluate this exEreSsioz. we have

S-[+ - Pogz .j +. r
N-I

E (J'o",P,] 1 )

when 0 > 3. obviously,
R < Il. og-- _____p. + I

+ logo,

Z" l - 2-plog (Pr ,
logs P. log, P.

The inequality

p':-1 1 < P, "'" P.-1 - P..

is proven in number theory. 2akiag its lcgariths, we obtain

- -ObI P, < logs P.

or

log, 2log, P. t-- -

Using this inequality, we will obtain
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-2 2 IR< - -"+ -- " )
,1-It . log, .

we will study the CSrrective capabilities of the codes in

question with one redundant dig ior base p..

First we will define ta. concept of rror. We will consider a

single error to be the distorticn cf any one number of the n-digits

of representation (1), whereupon tAe distortion is limited only by

the value of the base. we will ccnasider a k-fcld error to be the

distortion of k numbers ct the representation.

Let A s (a,# ..., ) be the transmitted message; we will

introduce the designatiCn A2t (a, ;z, - ,,) for the received

essae.

We will consider message ( i', -9'2, *see T) to be errcr-tree

if

And if

A Po
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we will consider the ccrzaspcuding representaticn to be erroneous.

We will point out that it is always true that 0 4 < P and, as

stipulated, 0 j A < P.,.

Xf message (1) is tzanssiered, in general, any of the possible P

messages can be received. doee EA, of these will be received as

error-free messages, atd P - P, - as errcneous. Thus, the number

P - P, shows the total nusber oz detectable pcssible errors. The

ratio P PR- can serve as the measure of the detectionP N,

capacities of a code. It is interesting to calculate the number of

detected single, double, etc., exicrs.

We will assume that the bases of the SOK are arranged in order

of increasing value, i.e.,

P1 <P3 < ... <p.

Then the number P1 , P2. so*# P, will satisfy the inequalities

P, > P, > ... > P.. (5)

We will show that in tAis case, the presence of the redundant

base ph is sufficient fcr detecting all single errors.

Theorem I. Let A ( I. a2 .. e, a,) 0,6 A > P, be the
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transmitted message or th. precise result of performing arithmetic

operations in the SON, and -i (010 a,, .... 0) the message

received or the result of tho calculation obtained in the SOK., Then,

if aL. when 1 0 k azd 7mA A a,* (i = I1 g..., n), we hav, the

inequality

I--- P.,

which detacts the error.

Proof. First, we vill paint out that the distortion of the digit

-k* %*) means the addition of the value Zn4 to the number A, where

B* (0, 0, *go# 0, lop 0, ..., 0) with the units of the k-th digit,

A A+ B,(mod P), o <I< Pt,

but B* s9 where 0 < s < p., which means that

A =-A+ Is Pv (mod P).

But since r and f pt . p, we obtain

A=!A + r P.(od P), where ti < r < jh Further, we will point out that

when 0 ..CA < P1, the nember A + rf* is located in the range 0O, P)

and, furthermore~, we have (5).

Therefore, the inequality



DOC = 1000 PAGE 35

A + r Pjt-t!P,.

holds in the range (0, P). Wheace it follows that

A - +r P:- .,

which also had to be prcven.

We will look at an examile. We will consider the bases to be the

same as in the examples frm th* preceding sections: P, = 3, P2 = 5,

p3 = 7, p, = 11. P, = 1 !.

Example 4. Let A = 1 = (1, 1, 1, 1) be the transmitted message

and A = (1, 1, 4, 1) - the received message. Calculating the value of

A, we will obtain

A=(, I, 4, 1)-r.385-z.231+4-33o +.21o-2146-99I>oS;

which means that an erroneous message has been received.

The process of detecting the inaccuracy cf the representation

obtained can be realized in the arithmetic unit operating in the SOK.

Actually, for this purpcse it suffices to ccnvert the representation

obtained into the generalized pcsition system with the same bases as

in this SOK (see (17), §2). If the higher-order digit of the CPS a
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turns out to be equal to zero, the representaticn is error-free, but

if a71 d 0, the representalon ota.ined is erroneous. Thus, in the

example in question, tte representation cf the number A in the OPS

has the form

A= I + o.3 -- 3 .15 + 9 . o;

so that a,- 9 / 0.

It is very obvious that ii we know the digit of the SOK which

contains the error, it is easy to correct. Actually, if we use Ak to

designate the (n - 1)-digit repesentation obtained from expression

(1) by subtracting the digit a*, in view of ccnditions (2) and (5),

we will have &A = & when k = 1, i, ..., n. Therefore, if we know that

the error occurred in the digit with the number k, A - Ak = A. In

order to obtain the number A = A, it suffices to subtract the value

P& from it until a nustez which lies in the range (0, Pk) is

obtained. If it is necessary to determine the number a in a device

operating in the SOK, ue proceed in the same manner as in §2 with the

detection of the undefined values of the form 0/0.

The possibilities of correcting a single error for a code with

cue redundant digit for kase p., are dotermined by the following

theorems.
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Theorem 2. Assume that 0,< A < P. and that we know that only a

single error is possible in the received message

0 (a2 0, *.,r J Let r ~ = iAU *D~~*

designate an (, - 1)-digit representation obtained by the subtraction

cf the number 7.. Then, if \.- P,, , the number a of the received

representation is errcz-free.

Proof. First we will point out that the inequality AA > n is

possible when k < n, since we nave Pk > P., in this case. Further,

inequality Ak >, P, means zaat tfre in - 1)-digit representation of A

contains an erroneous cumbr. Hoever, by definition only one error

is possible; therefore, rusner ak is errcr-free.

Corrolary. When the inequality !. > P,. holds for the values

n m 1, 2, ... , (n - 1), the number of the n-th digit is erroneous.

Actually, according to the theorem, in this case the numbers a

k = 1, 2, ... (n - 1) will be error-free, which means that the number

of the n-th digit a. will be erxoneous.

The case discussed in the corrolary is possible. This follows

from theorem 3.

Theorem 3. Suppose tha only a single error is possible in the
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received message in A = | , .--, ')- If the value of A

satisfies one of the iregualizies

P. < P _ (6)

cr

P.- (p-- - ')+ P. < .< P , (6a)

the number of the n-th digit uill re erroneous.

Proof. According tc the coziclary of thecrem 2, in case (6) it

will suffice to show that the equation

.4, -

holds for values of k = 1, 2, ... , (n - 1).

But these equations follow tzcm conditions (6), (5) and the

uniqueness of the representation of the numbers of the range (0, Pk)

in the SOK.

We will prove the theorem tcr case (6a). We know that the

distortion of the digit a means the additicn of the value rkPk to

the number A, where 0 < k 4- a, & < rk < Pk, or, equivalently, the

value
PA. (PI - r),

= . ..... ........... ,
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where
,< ,-k <Pk.

Ve will have

P- < P.,_,< ..< P,< ,?I!

whence

P P. - P, '" > P + P,. - P .-

Based on condition (6a), we caa write

7>p- P,,I +. P> .. >p- P, P.,

or, in other words

A> P._I (p,._, - i) + P. > ..> P, f) t -i .

Furthermore, it is obvicus that

Fk (pk,- P)(pk- r,), oi < k 7-S t, o< rk < pk,

therefore,

A _ _,(0',--__ _ _ _ ,, k-_,__.....___ --__, ff< r< P.
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This means that none of ts numbers of the form

"4+ Pk (Pk -- r 5, .4 <" , .P., 41," 2. x

0 < 'k < Pk

can satisfy inequality (6a). Consequently, it is impossible tc have

an error in the digits wita nuabers k = 1, 2, ... , (n - 1); this is

equivalent to a confirmation.

Theorem 3a. If we also assume that there are no even numbers

among the bases, the errcr will also be in the n-th digit when the

received message & satisties the inequality

- I- -2 --,,<P P,,-t+ p., < A < P ",-

The proof follows ixom the inequalities

P, -- I p, - K P. -- p, + ,

2 2

we can approach the study of the correcting capacities of a code

with cne redundant digit somewhat differently.

Let
LetA 

- (.%I- eel...

be tha transmitted message, and

-A
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.A = z2 Z , .- , .

-the received message.

ae will call the representation

the distortion vector.

8y definition,

. . where A : 0 waen A = A and A # 0 when A $ A. tf we obtain

an erroenous message A - P,, we can construct the tctal system of

possible distorting vectCrs.

Lemma 1. Let A >. Fn be the received message. Then the numerical

values of all the possible distorting vectors are

,,, A- ,A - -..... - (P,- ). (8)

Proof. Actually, it A > P, is the message obtained, we are

justified in assuming that any cl the P1 errcz-free representations

with numerical values of 0 1, l , ... , Ph- 1 was transmitted.
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If the representaticn

0 - (o, u, o)

was transmitted, the distorting vector 6s will obviously be the

vector & itself

S+

If tha message

I - ( , ... . ,

was transmitted, the distorting vector A, will ke the vector A - 1,

sincA

7 4+ 7-- 1+ (7-).

Continuing in this fashion, we obtain series (8).

In the future, we will designate system (8) as

% , .. pn - (9)

and we will call it the total system of distortion vectors.

Lemma 2. If the etrcneous message - :P is received, there is

precisely one vector it tne total system of distortion vectors (9) in

which the first (n - 1) numbers are equal tc zero, while the number

I-
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of the a-th digit is ncrzexoo

Proof. since the nusbezs (9) form the total system of remainders

for modulus P,, they contain precisely one number which is a multiple

cf P4; we will designate it as 1. [he first (n - 1) digits of the

vector A are obviously equal to zero; furthermore, because of

condition P., 4 & < P, if even one cf its digits is nonzero, the last

digit of the vector A is nonzero. The lemma is proven.

It follows from laea I that the problem of correcting the error

in the message obtained can be sclved by the correct selection of one

of the possible distortLcn vectcrs (9). If this selection is made, we

will obtain the corrected message in the form of the difference

A - 1 - A. If we assume the possibality of only single errors, it is

logical to begin the problem o correcting the erroneous message with

the selection of the vectors frcs system (9) which have only one

nonzero number. It fellows from lemma 2 that there is always one such

vector with a nonzero nusber in the n-th digit in complete system

(9). This means that we can always assume the presence of a single

error in the last digit. The corditions ef theorem 3 indicate certain

ranges of the value of I for which the total system of vectors (9)

contains one vector each with one nonzero digit. If the number of

these vectors in systel (9) tuxts cut to be greater than one, the

correct selection of tte necessary distortion vector can only be made
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with certain additional assuspticns (e.g., the assumption of the

impossibility of an ertc: in the n-th digit), or on the basis of

probability consideraticts.

Now we will assume taat the redundant bass p4 satisfies the

condition

p- >p'.p " zi<j<n (to)

and we will study the distribution of distorting vectors with one

nonzero digit in the rarce [0, E).

Reeber that the vectors bith a (n - 1)-th zero digit have

numerical values which are sultiples of ,, while the total

system of distortion vectors (9) fills a range of numbers of length

Lemma 3. Vith condition (10), not more than one vector which is

a multiple of Ps.. i = 1, 2, ... , (a - 1) can fall in each range of

length PM.

Proof. To prove this statement, it will cbviously suffice to

show that
jkP,- I Pil > ,.

-.
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when

We have
k P,-lpi- k " P.- - -  1 P P (k pi - I p,). (I)

Pi P.; pi

It has been stipulated that p" >piPi, therefore

P,P' -> =. p,,. .

,1 Pj PS

Furthermore, since the nunoers k and Z satisfy the conditibus

0 < k < pZ, 0 < . < p,, and p, and pj are ccprime when i A j, we

obtain

k pj -1 pj * o.

Whence it also follows from equation (11) that

RA ,- IP l > P.It Vj - l I>P.,

which had to be proven.

Theorem 4. We will assuue tba the error-free transmission of

the numbers of the n-th digit is provided. When there is one

redundant digit for ban* p. whicb satisfies ccndition (10), the

single error in the message received can always be corrected.
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Proof. For the prcc± it suffices to note that according to lemma

3. only one number which is a aulziple of Pj, (i ii n) can exist among

the numbers of the whole system cf distorting vectors (9).

Lemma 4. we will assume that condition (10) is satisfied.

The complete system of distorting vectors (9) contains two

different vectors with a (n - 1)-th zero digit only when the value of

Afor which it is comprised beicugs to one of the ranges of the type

[k, P; k, Pi + P,,), (2)

Proof. First we will show that system cf vectors (9) contains

two vectors with a (n - I)-th zero digit. According to lea& 2, one

vector which is a multiple of pn is always present in system of

vectors (9). It also ccntains a vector which is a multiple of P

(i : n), since the system of vectors (9) which fills the interval of

length P7L has the point A, which lies in interval (12) (also length

P.J for its right end, while its left end is the vector kIP- .

We will demonstrate zhe opfcsite. If the system of distortion

vectors (9) contains a vector of the fore kLPL (i A n) instead of a

vector which is a multiple of Ph the value of 1 - Ao lies to the

right of the point kj%, at a distance which does not exceed Ph*

-......
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Therefore, k lies in the range cf the form (12),

we will use D to designate the set of points belonging to all

the ranges (12).

zhaorem 5. We will assume that conditicn (10) is satisfied, and

that only a single errcr is Eossible in the received message A. Then,

if k does not belong tc set D and > > Pn, the number of the n-th

digit is erroneous.

Proof. The prcof follows from lemmas 4 and 2.

This theorem is a generalization of theorem 3 with the

additional condition (10).

ae will study the Ecssibility of detecting double errors for a

code with one redundant digit E..

Remember that we consider a dcuble error to be the simultaneous

distortion of two different namtets of a representation by a value

which is limited to the cozresjcading base. This means that if

A = (a&# as* --- p a. J is the transmitted message and

= (it, .o., is the received message with a double error, then
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--4-= A -- l'

whoere
whee o, ... , , o, O.... o, /, o, ... o)

(@#o. ,*o)

is the distorting vsctCZ.

Lemma 5. Suppose tnat (n - 2) digits have been fixed in the

representation

A4 = l.z =-, .. '

and two digits, e.g., a. and -i- (i < j), assume all possible values

(o!-,<p,, o_%: <p.j). Ihen the numerical values of the

representations obtained are dstributad in pLpj nonintersecting

intervals
[k Pil; (k i ) P,)

where

Pj -pip (13)

k = o, 1, 2, , (.. .p, -

Proof. First of all, it is obvious that the pjy; representations

defined in the conditicas are Ecssible in all. We will show that none
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of the intervals (13) can racea.ve two different such representations.

Indeed, let

A =c-. i Ct+1 ... I Oj-I' Cg Zj~tt) . I C-N)

and

whereuapon at least 0fl3 of the differencas (i ;- 5j%-j is

nonzero.

we will consider ttk difference

It is obvious that the number A - A )4 0 can be divided by Pdjt i. e

- - A) = sPZ1 , where 0 < s < This means that the distance

between the numbers A and A is not smaller than the length of each of

the intervals (13). These al~l pEAPJ numbers fall in different

intervals (13), which had to be prcyen.

we can obtain a theorem, analogous to thecreu 14 from this lemma.

Theorem 6. We will assume that the error-free transmission of

the numbers of the n-tb digit has boon provided. Then, when there one

redundant digit with res~act to tase pr.which satisfies condition

(10), the double error in the message received can always be
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detected.

Proof. The proof follows from lemma 5, since because of

condition (10), we have

P p4
Pi - >-- - P. and A > Pn,

and this is equivalent to a contizaation.

Nov we will compute th3 number of etectable dcuble errors in

the presence of one redundant digit for the largest of the bases py.

We will consider the number of digits i and J to be fixed, with

Ji< J.

The set of numbers I cormez~cnding to all possible values of the

distortion vectors A - ctviously consists of (p, - 1)(p; - 1)

elements. According to lemma 5, all of these numbers fall in

different ranges of length Pj.

The erroneous representations with double errors which fall in

the working range C0, Pa) are undetectable.

We will calculate their nuukez. Thare art

SrP 1p,F, LP u t'--

:'? ;
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nonintersecting ranges of length P-* in range (0, P 1. Here. if

= , sn = pi, and if j #c, . j < pi and seL nonintersecting

ranges of length PLj dc not coap Ltely ccver the interval (0, P-n).

Vhenc4 it follows that the nuaeuxcal values of the transmitted

messages A (A < Pyt) belcng to cue cf the intervals

[ (k 1- ) pj; k Pj), k = I, 2, ...

or

[s, ; P ).

Now it is already clear that taere are not less than s- - I and not

more than sij distortion vectors AZj, l3aving the number A =A + Aq

in tha range [0, Pt.. Pox example, there will be sZj if j n and A

is located in the interval s,. A;-, P-) , while there will be s I - if

A=I Pj (o 1:5 sjI)."

Thus, the number cf detectable double errors will not be less

than

(p- I)(Pj- -, = -(i)p, -,i .

This means that out of the total number cf possible double

I A
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errors
-~p I)(pj -,

not lsss than

will be detectable.

4e will reduca this dxprassion to a form more convenient for

calcu lation:

(/, -i E (pj -- pi - .p, 

=. , - ppj - (pi + Pi)+(
p C 2

f- ," i i<nt"iii

Footnote: 'Here () is the bincaial coefficient. End footnote

The last tQrm was oktained here as a result of the follcuing

transformations:
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I, ,

I- a-I

15 J ,f- I_,

. -- -- 1.i

- i +.i) - (u - ! )

It suffices to find the parcdantag . ratio cf numbers (15) and

(14) in order to obtaic an idea ci the propcrtion of detectable

doubla errors.

We computed this raUo wita the assuupticn that the codes in

question are used in a ccaputer cferating in the SOK with an upper

boundary of the numerical raye cf 10i1-1012. The simple numbers

2, i, 5, 7, , 13, 17, 19, 23, 29. 31, 37,

ware approximately used as tbe kases, where we considered the base 37

to be redundant. The calculations shoved that with this coding.

96.9o/o of the double errors can be detected. This figure differs

insignificantly from - which serves as the measure of the

detection capacities of the code in question. In this case, we will

have

37 - - 36 j97'9. i.e. # S7 29o/o.

37 37
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Now ve will consider tae ccrrective capacities of codes with two

redundant bases with resEect to the largest digits p,-& and ph.

First, we will shcb that a code with two redundant digits

provides the corroctior cf all single errors.

Theorem 4. Let & = soa, p --- , an) be the transmitted message

or the precise result ct Tne execution of arithmetic operations in

the SOK, and A = a,, a, .. @ - the received message or the

result obtained from the calculaticns in the SOK. Then a single errcr

can always be corrected if the rumerical values A of the transmitted

messages or the precise results cf the calculations in the SCK

satisfy the inequalities

oS, < P'P2  - .

Proof. We will consider all possible (n - 1)-digit

representations A,, comprised from the message received by

subtracting one number tbnere will be n of them). If there are no

errors in the message received, for all values of i a 1, 2, ... , n

there will be

.jja-Jj- A <pL~p,.. .,

If the message received ccntains a single error, then all the

(n - 1)-digit representations ot AL except one will contain one
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erroneous number; theretcre thacram 1), the inequality h

X> P, •P 2 ... P.,2

will be satisfied for the in - 1)-th value of i, and for only one

value of i, e.g., for I = k, will

The latter corresponds tc the case when the errcneous number has been

subtracted; but then, since A < espz, . PM2 we obtain

= k z=.

Now we can already rizd tha true value of the number ak. In

crder to do this, it suffices to find the remainder from the division

of Ak by pA.

The calculation of tne values of the (n - 1)-digit

representations of IL is not a complex problem. If the value of T has

already been calculated, and we sust begin with this, then

- " where r Tf.+J

Thus, in order to calculate tAe values of A, it suffices to subtract

the number PL from A urtil a nuante lying in the range [0, P ) is

obtained.
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The presence of twc redundant digits is also sufficient for

detecting any double etrc:. Actually, in the ;resence of a double

error, at least one cf the (a - I)-digit representations will contain

a single error and, therEfore, the numerical value of AL

corresponding to it will aG outside the range (0; pop2 *,.. Pa-a].

Again we will assume tnat a oinary channel is used for data

transmission and we will estimate the number cf redundant binary

symbols for a code with two redundant digits, i.e., for the code of

corrective single or detectable double errors.

Remember that in the codes in question, a single error means the

possibility of distortica of not cnly one binary symbol, but also

distortion of the number z by a value .<pi - 1, which can correspond

to the distortion lcgFp] of the binary symbols.

For the codes in question, the number of redundant binary

symbols is equal to

r -~ ['Iri 2 Pu...1 + [log2 Pfl] + 2.

In order to estimate this numaer as n-*, we will use the asymptotic

formula of analytical umbes heozy

ij
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P, it Inn, in., lim

Therefore,

log1 p, -'.I.g, ,p - log, In n.

Thus, as n-a-, we obtain

r - log -p,-, - log, n t - i) + log2 (In n In (n - z) )

or
r - 2 log, it.

I will take this cEfortunity to thank to I. Ya. &kushkiy for his

constant attention to my work and bis helpful ccmments.
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